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a b s t r a c t

Problems of the existence, stability, and branching of the permanent rotations of a heavy, dynamically
symmetrical rigid body suspended on a rod and which has an axisymmetric ellipsoidal cavity filled with
a fluid are discussed. The phenomenological model of the friction of the fluid against the cavity wall
proposed by Samsonov is used. All the trivial permanent rotations of the system and the non-trivial
rotations that branch off from the trivial ones are found. Their stability and branching are investigated
using a modified Routh’s theory. The results obtained are presented in the form of an atlas of bifurcation
diagrams.
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Basic results on the dynamics and stability of the motion of bodies with cavities containing a fluid were obtained in Rumyantsev’s work
(see Ref. 1). Fundamental results on the dynamics of a body suspended on a rod have been obtained by several researchers (see, for example,
Refs. 2–6).

1. Statement of the problem

Consider the problem of the motion of a dynamically symmetrical body that has a cavity completely filled with a viscous fluid and is
suspended on a weightless non-deformable rod O1O at the fixed point O1. The elements are attached at the fixed point O1 and the point of
suspension O of the body by means of ideal ball joints. It is assumed that the point O lies on the dynamical axis of symmetry of the body
(Fig. 1).

The cavity located within the body or shell has the form of an ellipsoid of revolution with semiaxes b1, b2 = b1, b3. It is assumed that the
axis of symmetry of the cavity is the same as the dynamical axis of symmetry of the shell. The cavity is completely filled with a viscous
fluid.

Let C be the centre of mass of the body–fluid system. We will introduce the moving system of coordinates Cx1x2x3, whose axes are
rigidly connected to the shell and are directed along its central principal axes of inertia, which are specified by the unit vectors i1, i2 and
i3, where i3 = −→

CO/|−→CO| represents the dynamical axis of symmetry of the shell. Let m be the mass of the entire system, and let � be the
absolute velocity vector of the point C. The system is situated in a uniform gravitational field –mg�, where � is an ascending vertical unit
vector. We will introduce the following notation: –Ne is the tension force of the rod, where e = −−→

O1O/|−−→O1O| is a unit vector directed along
the rod, N is the projection of the tension force onto the vector −e; l = |−−→O1O| is the length of the rod, a = |−→CO|, and a = −→

CO = ai3 is the radius
vector of the point of attachment of the rod to the body relative to the centre of mass C.

We will use the method previously described in Ref. 7 to describe the motion of the system. The angular momentum vector Gs of the
shell about to the centre of mass C is related to the angular velocity � of the body by the expression

where Js is the inertia tensor of the shell relative to the Cx1x2x3 axis system, and As and Cs are the equatorial and axial moments of inertia of
the shell about to the centre of mass of the system. We will assume that the state of the viscous fluid can be described by three components
of the mean “vorticity” tensor �, which is an integral characteristic of the fluid in the cavity. Then the angular momentum vector of the

� Prikl. Mat. Mekh. Vol. 72, No. 3, pp. 355–373, 2008.

E-mail addresses: avkarap@mech.math.msu.su (A.V. Karapetyan), sumin@imec.msu.ru (T.S. Sumin).

0021-8928/$ – see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2008.07.001

http://www.sciencedirect.com/science/journal/00218928
mailto:avkarap@mech.math.msu.su
mailto:sumin@imec.msu.ru
dx.doi.org/10.1016/j.jappmathmech.2008.07.001


236 A.V. Karapetyan, T.S. Sumin / Journal of Applied Mathematics and Mechanics 72 (2008) 235–249

Fig. 1.

filler about to the centre of mass C can be represented in the form1

where J* is the inertia tensor of the so-called equivalent body (in the Cx1x2x3 axes system), J′ is the difference between the inertia tensor
of the fluid I = diag{Al, Al, Cl} and the inertia tensor of the equivalent body J* relative to the Cx1x2x3 axis system. The components of I and
J* depend on the mass of the fluid and the geometrical dimensions of the cavity and have been obtained in the form of exact formulae for
some types of cavities, including ellipsoidal cavities (see, for example, Ref. 1). If we use ms to denote the mass of the shell and ml to denote
the mass of the fluid, we have

Here �1, �2 = �1 and �3 are the central radii of inertia of the shell, s is the distance from the centre of mass of the shell to the centre of mass
of the system, and � = b1/b3 is the aspect ratio of the cavity.

The components of the vectors �, e, �, � and � in the Cx1x2x3 system will be denoted by �i, ei, �i, �i and �i (i = 1, 2, 3).
Following Zhukovsky, we introduce the notation for the inertia tensor of the transformed body J* = diag{A*, A*, C*}, which represents the

sum of the inertia tensors of the shell (Js) and the equivalent body (J*).
We will write the equations of motion of the system in the central principal axes of inertia of the body using the theorem of the variation

of the angular momentum about to the centre of mass C:

(1.1)

To take into account the normal motion on the cavity wall, we will update the well-known Helmholtz equations for the uniform vortex
motion of the fluid

(1.2)

Here e = (1 − �2)/(1 + �2) is a parameter that characterizes the aspect ratio of the cavity, and g1, g2 and g3 are notations for the right-hand
sides of the equations in system (1.2).

System (1.1), (1.2) can be reduced to the form

(1.3)
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Here

To obtain the remaining two components of the vector Lp, cyclic transposition of the indices (123), as well as of the constants (A′B′C′),
(A*B*C*), (A*B*C*), (AsBsCs) must be performed in the last equation. Here we assume that A′ = B′, A* = B*, A* = B*, As = Bs; M = (M1, M2, M3) is
the moment of the tension force of the rod.

To introduce the friction of the filler on the shell wall, we add the moment Lf to the right-hand side of the first equation in (1.3), and we
add the moment −Lf to the right-hand side of the second equation. We obtain the system

(1.4)

We will assume that the moment Lf depends linearly on the difference between the vortex vector of the filler and the angular velocity
of the body:

Thus, the coefficients �1 and �3 have been introduced phenomenologically.
We sum the left-hand and right-hand sides of the equations in system (1.4), and we replace this system with the equivalent system (a

similar procedure was previously employed in Ref. 7):

(1.5)

(1.6)

Thus, the mechanism of the interaction of the viscous filler with the shell walls is described by system of Eqs. (1.5), (1.6). We add to
them the missing equations that describe the dynamics of the body on the rod, to them, and we write them in a single system of equations
of motion relative to the principal axes of inertia of the system:

(1.7)

Here

The tensor D characterizes the friction of the filler on the shell wall, and the tensor L has an auxiliary character.
The first equation in (1.7) expresses the law of variation of the momentum of the system, the second equation expresses the law of

variation of the angular momentum of the system (this law is written down in scalar form in system (1.5)), the third equation is Poisson’s
equation, the fourth equation is the kinematic condition that connects the velocities of the points C and O of the rigid body, the fifth
equation is the vector formulation of system (1.6) (when � = 0, the tensor D vanishes, and the fifth equation is identical to the Helmholtz
equation for describing the uniform vortex motion of a fluid), and the sixth equation is a relation that expresses the condition for the rod
to be non-extensible: |−−→O1O|2 = (le, le) = l2 = const.

In the chosen Cx1x2x3 reference system, system of Eq. (1.7) is closed with respect to the unknown vectors �, e, �, � and � and the scalar
N. In this reference system the vector a is constant and has the coordinates 0, 0, a.
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2. The effective potential

System of Eq. (1.7) allows of the area integral

(2.1)

and the geometric integral

(2.2)

The total mechanical energy of the system is a non-increasing function:

(2.3)

Therefore, Routh’s theory for dissipative systems with symmetry can be used to search for and investigate the steady motions of system
(1.7).

We find the effective potential of the system as the minimum of the function H with respect to the variables �, � and � at the fixed
level of the first integral K = k:

For this purpose, we introduce the function F = H − �(K − k), where � is an undetermined Lagrange multiplier, and we write out the
conditions for its stationary behaviour with respect to the variables �, �, � and �:

(2.4)

From the first three equalities in system (2.4), it follows that

Substituting these values into the last equation of system (2.4), we find

Thus, a minimum of the function H at the level K = k is reached for

(2.5)

and is equal to

(2.6)

To make the mathematical expressions more concise in the ensuing discussion, we introduce the following notation for the components
of the tensor J* + J′:

3. The general properties of steady motions

According to Routh’s theory, the critical points

(3.1)

of the function Wk(�, e) on the manifold {�2 = 1, e2 = 1} correspond to the steady motions described by Eqs. (2.5) and (3.1), which are clearly
permanent rotations of the system as a rigid body (� = �) about the vertical, and the minimum points correspond to stable steady motions.

Assertion 1. In any steady motion described by Eqs. (2.5) and (3.1), the vectors a, e and � lie in one plane.

Proof. After scalar multiplication of the second equation in (1.7) by �, we obtain the equality

(3.2)

from which, for the steady motions described by (2.5) and (3.1), we have

Since the multiplier NkJ−1 /= 0 in the general case, the mixed product of the vectors a, e and � is equal to zero. This means that these
vectors are coplanar.
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Assertion 2. The energy function H decreases in all motions that differ from the steady motions described by Eqs. (2.5) and (3.1).

Proof. According to formulae (2.3), dH/dt 0 if and only if � = �. It follows from the fifth equation of (1.7) that �̇ = ˙̋ 0. Substituting
these relations into equality (3.2), we obtain

(3.3)

Since N /= 0 in the general case, the following two cases are possible:

a) a = ��, where � is a constant;
b) the vectors a and � are not collinear.

In the second case,

where � = �(t) and � = �(t) are functions of time t. If � = 0, the system is in an equilibrium position, which is a special case of permanent
rotation.

Case a. Substituting the expression a = �� into the second equation of (1.7), we obtain

where 	 is a certain constant. Differentiation of this equation gives the equality

Multiplying this equality sealarly by the vector e and taking into account the last equality of (1.7), we obtain Ṅ 0. Therefore, ė 0. In
addition, it follows from the fourth equation of (1.7) that the velocity vector � is also constant, and it follows from the first equation that
�̇ 0. Finally, according to the third equation of (17), we have a linear relation between the vectors � and �.

Case b. We have

(3.4)

Since |e| = 1, � and � are related by the following expression

(3.5)

It follows form the second equation of (1.7) (or Eq. (1.5) that

(3.6)

In this formula it is assumed that � /= 0. If � = 0, then e = �i3, (e, ė) = ��̇ = 0. Hence it follows that �̇ = 0 and e = const. This case corresponds
to a trivial uniform rotation, i.e., a rotation during which the axis of symmetry of the body and the rod lie on a vertical.

Substituting expressions (3.4) into the fourth equation of (1.7), we obtain

(3.7)

Finding an expression for the unit vector of an ascending vertical from the first equation in system (1.7) and using the formulae for N,
e, � and �̇, we obtain for the components of the unit vector �

(3.8)
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In addition, Poisson’s equation (the third equation of (1.7)) holds for the unit vector �. In projections onto the axes of the Cx1x2x3 system,
this equation gives

(3.9)

(3.10)

(3.11)

We will write Eqs. (3.9) and (3.10) in an equivalent form. For this purpose, we first multiply Eq. (3.9) by �1 and Eq. (3.10) by �2, and add
them. We then multiply Eq. (3.9) by �2 and Eq. (3.10) by −�1, and we also add them. As a result, we obtain

(3.12)

(3.13)

In changing from system (3.9)–(3.11) to system (3.11)–(3.13), we assume that �2
1 + �2

2 /= 0. If �1 = �2 = 0, then e = (��3/� + �)i3, and

(e, ė) = (��3/� + �)(�̇�3/� + �̇) = 0. Since the first multiplier cannot be equal to zero, we have (�̇�3/� + �̇) = 0 and e = const. This case
corresponds to a trivial uniform rotation.

After substituting the first two expressions in (3.8) into Eq. (3.11), we obtain

(3.14)

In a similar manner, from Eqs. (3.12) and (3.13) we obtain

(3.15)

Here c1 and c2 are arbitrary constants of integration
Taking into account equalities (3.14) and (3.15), we write the expression for �̈ in the form

(3.16)

Substituting expressions (3.14)–(3.16) into the last equality of (3.8), we obtain an algebraic equation in � and � with constant coefficients:

(3.17)

It follows from Eqs. (3.5) and (3.17) that � and � are constant. Therefore, the vector e and the scalar N are also constant (see relations
(3.4) and (3.6)). It follows from the fourth equation of (1.7) that the velocity � is constant, and it follows from the first equation of (1.7)
that the unit vector of the ascending vertical � is constant. Finally it follows from the third equation of (1.7) that the vectors � and � are
linearly dependent. Thus, Assertion 2 has been proved.

Hence, according to the theorem of partial asymptotic stability for dissipative systems8, it follows that isolated minimum points of
the effective potential correspond to asymptotically partially stable motions, and the other isolated critical points correspond to unstable
motions. In the former case, partial asymptotic stability means that a perturbed motion tends to a permanent rotation (but not necessarily
to an unperturbed permanent rotation).

4. The equations of steady motions

We will investigate the steady motions of the dynamical system under consideration in coordinates that are not connected to the central
principal axes of inertia of the body. At the fixed point O1 we introduce the system of coordinates O1y1y2y3, which rotates with angular
velocity 
 = kJ−1 about its O1y3 axis, which is directed vertically upwards. The other two axes were chosen so that the unit vectors of the
axes of the system of coordinates would comprise a right-hand orthonormalized reference system.

The equations of the steady motions will have the form

Therefore, to find the steady motions we can use the equations of relative equilibria in the O1y1y2y3 system of coordinates that rotates
with a constant angular velocity 
 = const (see also Ref. 1):
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Following a well-known approach,6 we introduce the scalars eyj
and use i1j, i2j, i3j to denote the projections of the vectors e, i1, i2 and

i3 onto the O1yj axis (j = 1, 2, 3). The following geometrical relations hold

(4.1)

In the O1y1y2y3 system of coordinates we have

Henceforth, instead of W
 we will consider the function

where �ey , �ir , �isit are undetermined Lagrange multipliers.
We will seek the steady motions described by Eqs. (2.5) and (3.1) in the system under consideration, based on the conditions for steady

behaviour of the function W* with respect to the variables eyj
and irs

(4.2)

taking relations (4.1) into account. We have

(4.3)

(4.4)

(4.5)

From (4.5) we obtain

(4.6)

By virtue of the fact that the expressions for ey1 and ey2 have the identical multiplier mal/�∗
ey

, it also follows that in any steady motions,
the vectors e, i3 and � lie in the same plane, since their mixed product equals zero.

Next, using conditions (4.1), from equalities (4.3) we obtain

(4.7)

On the other hand, using relations (4.6), from equalities (4.4) we obtain

Substituting expression (4.7) for �i�i3 here, we have

(4.8)

Hence it follows that only two cases are possible.



242 A.V. Karapetyan, T.S. Sumin / Journal of Applied Mathematics and Mechanics 72 (2008) 235–249

Fig. 2.

Fig. 3.

The case when i33 /= i∗33. In this case i13 = i23 = 0 simultaneously, and i233 = 1. This case corresponds to families of trivial steady motions,
i.e., uniform rotations, for which the points O1, O and C form a straight line coinciding with the vertical. These motions exist for any value
of w, i.e., for any value of the constant area integral k. They are shown in Fig. 2. The following notation is introduced for these motions

(4.9)

The case when i33 = i∗33. The quantities i13 and i23 can take any value. This case corresponds to families of “oblique” uniform rotations
(Fig. 3). They do not exist for any value of w (any value of k), since |i33| < 1 (the case when |i33| = 1 corresponds to the case when i33 /= i∗33.

It was shown above that the only steady motions in this problem are permanent rotations of the system as a whole about the vertical.
Since the body is dynamically symmetrical, the Cx1x2x3 system of coordinates can be turned relative to the O1y1y2y3 system in such
a manner that the vector i1 will always be parallel to the O1y1 axis without a loss of generality (see Fig. 3). For this reason, we set
ey1 = 0, i11 = 1, i12 = i13 = 0, i21 = i31 = 0 in any permanent rotation.

5. Trivial steady motions

It follows from the equations of the steady motions that there are four one-parameter families of trivial steady motions (4.9), in which

(5.1)
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Table 1

1) Solution S−+ S+−

2) Degree of instability 0 2 4 2 4

p > 0 w < w− w ∈ (w−, w+) w > w+ – w ∈R+
p < 0 w < w− w > w− – w > w− w < w−

To investigate their stability, we calculate the second variation �2W* of the function W* on the manifold

(5.2)

For each of the trivial steady motions, the second variation �2W* is the sum of two identical quadratic forms:

(5.3)

where

Therefore, the degree of instability can take the values 0, 2 and 4 only. (For the solutions S++ and S+− the degree of instability can take
the values 2 and 4 only, since the coefficient in front of (�ey� )2 is negative.)

We will use �1 and �2 to denote the first- and second-order minors, respectively, of the quadratic form F�, and, for convenience, we
will introduce the two dimensionless parameters

which depend on the inertial and geometrical characteristics of the system.
Let us examine the solution S−+(ey3 = −1, i33 = 1). It corresponds to a trivial permanent rotation of the system, during which the centre

of mass C lies below the suspension point O, and the suspension point O lies below the fixed point O1. The stability conditions of the solution
are written in the form of the system of inequalities

(5.4)

From the first inequality, we find that

The discriminant of the trinomial that is quadratic in w from the second inequality of (5.4) is positive:

Therefore, there are two real roots

(5.5)

It can be shown that the condition

holds for these roots when p > 0 (an elongated body) and that the condition

holds when p < 0 (a flattened body). In the latter case, the root w+ should clearly be discarded.
Applying Sylvester’s criteria to the quadratic form �2W*, we can obtain the stability conditions of the solution S−+: the results are shown

in the left-hand columns of Table 1. Similar calculations can be performed for S−− (S++), which corresponds to a rotation of the system
during which the centre of mass lies above (below) the suspension point and the suspension point is below (above) the fixed point. The
results are shown in the left-hand (right-hand) columns of Table 2. The results for the solution S+−, which corresponds to a rotation of the
system during which the centre of mass is located above the suspension point, and the suspension point is above the fixed point, are shown
in the right-hand columns of Table 1.

6. General properties of non-trivial steady motions

As was shown in Section 4, if i213 + i223 /= 0, we have the case of “oblique” steady motions. They are specified by the following relations

(6.1)
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Table 2

1) Solution S−− S++

2) Degree of instability 0 2 4 2 4

p > 0 – w < w+ w > w+ w < w+ w > w+
p < p+ w ∈ (w+, w−) w ∈ U – w ∈R+ –
p+ < p < p− – w ∈R+ – w ∈R+ –
p− < p < 0, q < 1 – w ∈R+ – w ∈ U w ∈ (w+, w−)
p− < p < 0, q > 1 w ∈ (w+, w−) w ∈ U – w ∈R+ –

3) Note: p± = −(1 ± √
q)2, U = {w ∈R+ : w < w+, w > w−}.

(6.2)

(6.3)

Here it is assumed that the Cx1x2x3 system of coordinates is turned relative to the O1y1y2y3 system so that the Cx1 and O1y1 axes would
be directed in the same direction; therefore it may be assumed that relations (6.1) hold for steady motions.

We express relations (6.2) in terms of the variables ey3 and i33 and the dimensionless parameter w:

(6.4)

Next, from the second relation of (6.4), we express w in terms of ey3 and i33. We have

(6.5)

The expression under the radical sign is always positive by virtue of the constraints imposed on ey3 and i33.
Consider Eq. (6.5) when the plus sign is chosen. We will denote the value of the parameter w that satisfies this equation by w1. We

obtain

(6.6)

Since w can only take positive values, w1 exists only when (1 − q
√

c)ey3 > 0.
Consider Eq. (6.5) with the minus sign. We will denote the value of the parameter w that satisfies this equation by w2. We obtain

(6.7)

In this equation w2 exists only when ey3 < 0.
We will introduce the following notation for the surfaces

and for regions in the space ey3 , i33, k2
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Fig. 4.

and we summarize the results obtained above.

Region G1 G2 G3

Rotation frequency w1 w2 w2 w1

Therefore, the oblique steady motions can be represented as the union of the two independent intersections �1 ∩ F1 and �2 ∩ F2 in the
region G1 (which corresponds to the solutions S−+ and S−−), as the intersection �2 ∩ F2 in the region G2 (which corresponds to the solutions
S−+ and S−−), and as the intersection �1 ∩ F1 in region G3 (which corresponds to the solutions S++ and S+−).

7. Initial portions of non-trivial steady motions in the vicinity of trivial motions

According to bifurcation theory, non-trivial (“oblique”) steady motions should branch off at points where the degree of instability of
trivial permanent rotations changes.

We will treat the half-plane P = {(p, q) : p ∈R, q > 0} as the set of all physically possible values of the parameters p and q of the system.
(Note that a natural constraint exists for p by virtue of the relations between the moments of inertia of the system: p ≥ A/(ma2).) In Fig. 4
this half-plane is divided by the coordinate axes and plots of p = p± into the following regions

According to the data in Tables 1 and 2, in each of these regions, all four families of trivial steady motions have a fixed number of points
where the degree of instability changes.

We will investigate the behaviour of the one-parameter families of non-trivial steady motions in the neighbourhoods of the bifurcation
points using the small-parameter method. Since it has previously been proved that the vectors e, i3 and � for any steady motions lie in
one plane, it is sufficient to assign two angles to describe the orientation of the rod and the axis of symmetry of the body in any non-trivial
permanent rotation. Let � be the angle between the vectors −� and e, and, therefore, ey3 = − cos �. Also, let ϑ be the angle between the
vectors � and i3, and, therefore, i33 = cosϑ. The trivial steady motions correspond to the following values of � and ϑ

Consider the points where the degree of instability changes for the solution S−+. According to the data in Table 1, for p > 0 there are two
bifurcation points, which correspond to the bifurcation values w± = 
2±l/g; for p < 0 there is one point, which corresponds to the bifurcation
value w− = �−l/g. In the neighbourhoods of these points, the angles � and ϑ are small. Let � be a small parameter. Following the general
technique of investigating bifurcations by the small-parameter method, we express ϑ and w in terms of �:

(7.1)

where x± and z± are constants that depend on the parameters of the system.
Since

after substituting these expressions into Eq. (6.4) taking (7.1) into account, retaining terms containing powers of � up to the second inclusive,
and equating the coefficients of like powers of �, we obtain

(7.2)
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(7.3)

(7.4)

From Eq. (7.2) we find

(7.5)

Eq. (7.3) is satisfied identically by virtue of relation (5.5). Substituting expression (7.5) into Eq. (7.4), we obtain

(7.6)

In order to determine the direction with respect to the parameter w in which non-trivial relative equilibria branch off in the space (ey3 ,
i33, w) in the neighbourhoods of the bifurcation points (−1, 1, w±), it is necessary and sufficient to ascertain the sign of expression (7.6).

Consider the branching point (−1, 1, w−) (the branching point (−1, 1, w+)). As was noted above, it exists for any physically possible values
of the parameters p and q, i.e., for (p, q) ∈ P (it exists for (p, q) ∈ P0). Substituting the expression for w−(p, q) (for w+(p, q)) given by formulae
(7.5) into (5.5), we obtain a function that depends on two arguments: z– = z−(p, q) (z+ = z+(p, q)). A computer analysis of this function revealed
that it takes only positive values for (p, q) ∈ P (for (p, q) ∈ P0). Therefore, in the space (ey3 , i33, w) “oblique” relative equilibria branch off in
the direction of increasing values of w in the neighbourhoods of the point (−1, 1, w−) (in the neighbourhoods of the point (−1, 1, w+)), and,
according to bifurcation theory, they are locally stable (locally unstable with a degree of instability equal to 2).

In order to determine the relative configuration of the rod and the axis of symmetry of the body on the branching-off permanent
rotations, we ascertain the sign of the expressions for x±, which are equal to ϑ/� in a first approximation (see formulae (7.1)). For this
purpose, consider the first relation in (6.2):

(7.7)

Note that

Consequently, in a first approximation i32/ey2 = �/�. Hence,

(7.8)

Taking into account (see Section 5) that in the case of the trivial solution S−+ w− < 1 < w+ for p > 0 and w− < 1 for p < 0, we conclude
that x+ < 0 (for p > 0) and that x− < 0 (for any p). “Pendulum-like” permanent rotations branch off from the point (−1, 1, w−), and “regular-
bump-like” permanent rotations branch off from the point (–1, 1, w+).

The oblique relative equilibria that branch off from the solutions S−−, S++ and S+− are treated similarly. It turned out that in each of the
regions P0, P1, P2, P3 and P4 of the parameters p and q oblique relative equilibria branch off from trivial steady motions in the direction of
larger values of w (i.e., z± > 0 in all cases).

We will find the conditions under which oblique steady motions branch off in the space (i33, ey3 , k2) at bifurcation points in a definite
direction with respect to k2, and we will thereby find the conditions for local stability of the permanent rotations.

Since the constants k2± and w± for the trivial steady motions are related, according to formulae (5.1), by the relations k2±C2w±g/l, the
analogous bifurcation points in the space i33, ey3 , k2 will have the coordinates ±1, ±1, k2±. In the neighbourhoods of these bifurcation points,
we have

(7.9)

where y± denotes some constants that depend on the parameters of the system.
By analogy with the case of the oblique relative equilibria, the direction of the branching of the oblique steady motions with respect to

k2 is determined by the sign of y±. The expression for y± can be obtained from Eq. (6.3) after substituting relations (7.1) and (7.9) into it.
On the basis of the theorem of the relation between the stability conditions of relative equilibria and steady motions (see Ref. 8), in some

cases the direction in which non-trivial steady motions branch off can be determined a priori, and a conclusion can be drawn regarding the
nature of the stability of these motions in the neighbourhoods of the bifurcation points.

Consider the points where the degree of instability of the solution S−+ changes. For p < 0 oblique steady motions are known to branch off
from the solution S−+ at the single branching point (−1, 1, k2−). According to what we have proved above, the relative equilibria branching
off from the trivial steady motion S−+ at this point are locally stable. Therefore, the non-trivial steady motions branch off in the same
direction as the relative equilibria and will also be locally stable.

For p > 0 oblique steady motions branch off from S−+ at two points (−1, 1, k2− and −1, 1, k2+) (see Fig. 5). According to what we have
proved above, the relative equilibria branching off from the trivial steady motion S−+ at (−1, 1, k2−) are locally stable, and, therefore, the
non-trivial stationary motions will also be stable. At the point (−1, 1, k2+) the oblique relative equilibria are unstable with a degree of
instability equal to 2. However, steady motions cannot branch off in the other direction with respect to k2, because in this case, according
to bifurcation theory, they would be unstable with a degree of instability equal to 4, which is impossible.8 Therefore, the non-trivial steady
motions branch off in the same direction as the relative equilibria and will also be unstable with a degree of instability equal to 2.
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Fig. 5.

Fig. 6.

The steady motions that branch off from the trivial steady motions S−−, S++ and S+− are examined in a similar manner. It turned out
that, unlike the relative equilibria, for which z± > 0 (see relations (7.1)), cases of steady motions for which y± > 0 (see equalities (7.9)) are
possible.

8. Bifurcation diagrams

The most complex types of Poincaré–Chetayev bifurcation diagrams of the steady motions of the mechanical system under consideration
are plotted schematically in (ey3 , i33, k2) space in Figs. 5–9. The initial portions of the oblique steady motions in the neighbourhoods of the
branching points were continued to the extreme steady motions.

Fig. 7.
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Fig. 8.

Fig. 9.

Fig. 5 shows the bifurcation diagram of steady motions in the case when (p, q) ∈ P0. In this region there is a single bifurcation diagram.
If (p, q) ∈ P1, the system has three bifurcation diagrams of steady motions, one of which is shown in Fig. 6. On the other two bifurcation
diagrams the steady motions emerging from the point (−1, −1, k2+) of the family S++ branch off to the right, and the steady motions emerging
from the point (−1, −1, k2−) of the family S++ can branch off both to the right and to the left. Fig. 7 shows one of the two possible bifurcation
diagrams of steady motions for the case of (p, q) ∈ P2. On this diagram the physical parameters of the system are such that y− < 0 for the
point (1, −1, k2−). The other diagram (not shown in Fig. 7), which corresponds to P2, illustrates the case of y− > 0 for the point (1, −1, k2−).
Fig. 8 shows one of the three possible bifurcation diagrams of steady motions in the case when (p, q) ∈ P3. In this region oblique steady
motions branch off from the solutions S−+, S++ and S−+. On the two bifurcation diagrams that are not shown the steady motions emerging
from the point (1, 1, k2−) of the family S++ branch off to the right, and the steady motions emerging from the point (1, −1, k2−) of the family
S++ can branch off both to the right and to the left. Finally, in the region P4 four types of bifurcation diagrams are possible. One of them is
shown in Fig. 8. In this region the values of the constant y+ for the point (−1, +1, k2) are positive, and the values for the points (−1, −1, k2+)
and (1, −1, k2−) can take both positive and negative values.

In all the figures from Fig. 5 to Fig. 9, the plus signs indicate stable permanent rotations, and the minus signs indicate unstable permanent
rotations. The numbers in parentheses alongside the families of steady motions indicate the degree of instability of the respective permanent
rotations. Conclusions regarding the stability of the steady motions were drawn on the basis of bifurcation theory.
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